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Abstract
Complex photonic band structures in two-dimensional photonic crystals composed of
high-temperature superconductors (HTSCs) for the case of E-polarization are calculated as a
function of temperature below Tc, where Tc is the critical temperature of the HTSC. The
calculations are based on a temperature dependent complex dielectric function, which includes
contributions of both superconducting electrons (SCEs) and normal conducting electrons
(NCEs), and a frequency dependent plane wave expansion method. Both temperature
independent and temperature dependent damping term in the dielectric function are considered
to calculate dispersion relations and the lifetime of the eigenmodes. The results are compared
with those obtained by existing calculation methods, which neglect the contribution of NCEs.
Our results correspond quite well with those obtained by the existing method in the
low-temperature range 0 < T /Tc � 0.3; however, results obtained with the two methods are
quite different in the temperature range 0.3 < T /Tc � 1. We demonstrate that the contribution
of NCEs is non-negligible with increasing temperature.

1. Introduction

Photonic crystals, which have spatially periodic dielec-
tric functions, have attracted growing interest in recent
years [1–10]. This is mainly because photonic band structures
(PBSs) may contain photonic band gaps (PBGs) in which all
the electromagnetic (EM) modes are missing. This is an oppor-
tunity for us to mold the flow of light for photonic information
technology [4]. PBSs strongly depend on the geometry of the
lattice and the dielectric indices of the components. Once the
geometry is constructed, a possible way to change the PBSs
is to change the component materials. Much work has been
done to calculate PBSs with different components, such as di-
electrics, semiconductors, metals and liquid crystals [5–10].

Recently, photonic crystals composed of superconduc-
tors have been studied via the plane wave expansion

1 Author to whom any correspondence should be addressed.

method [12–15]. Because of the unique optical properties of
superconductors, such a system is interesting [15]. A two-
fluid model is used to describe the electrodynamics of a su-
perconductor at nonzero temperature [11]. Because plasma
frequencies in superconductors are strongly influenced by tem-
perature and the external magnetic field, it is possible to use
these properties to realize tunable photonic crystals. Takeda
et al calculated PBSs of two-dimensional (2D) photonic crys-
tals composed of copper oxide high-temperature superconduc-
tors (HTSCs). They found that those photonic crystals exhib-
ited tunability by temperature and external magnetic field [12].
Feng et al studied tunable negative refractions in 2D photonic
crystals with superconductor components. They found that
the refractive angle could be scanned from positive to neg-
ative based on the dependence of the superconductor’s per-
mittivity on temperature [14]. Pei et al proposed a tunable
Mach–Zehnder interferometer with a 2D photonic crystal us-
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ing copper oxide HTSCs. Simulation results showed that light
transmission in the photonic crystal Mach–Zehnder interfer-
ometer can be modulated from 92.7% to 1.4% with different
temperature distributions [13]. The contribution of normal con-
ducting electrons (NCEs) was neglected in these papers in the
temperature range below Tc, where Tc is the critical tempera-
ture of a superconductor. As a result, the dielectric function of
the superconductor was reduced to a simple Drude model [13].
However, as we will show below, the contribution of NCEs
cannot be neglected when the temperature increases, especially
at temperatures close to Tc.

In this paper, we consider contributions of both
superconducting electrons (SCEs) and NCEs. Temperature
dependent complex PBSs of 2D periodic systems with copper
oxide HTSC components are calculated based on the frequency
dependent plane wave expansion method. We only consider
the E-polarized EM waves, as in [12–15]. The electric field
is parallel to the direction of the cylinders (the z axis) for
the 2D photonic crystal structure in the xy plane. Noting
that copper oxide HTSCs are highly anisotropic, with in-
plane (ab plane) conductivity much larger than that in the
c axis [22], where the a, b, c axes are the three principal
axes of copper oxide HTSCs. We should clarify that the
electric field of the E-polarized EM waves is parallel to the
c axis: Ez ‖ c. Both temperature independent and temperature
dependent damping terms in dielectric function of HTSCs are
considered. Temperature dependent PBGs, cut-off frequencies
and the lifetime of the eigenmodes are calculated in triangular
lattice photonic crystals. Our results are compared with those
obtained using the existing calculation method [12, 13], which
neglects the contribution of NCEs.

2. Theory

According to the two-fluid model, electrons in the supercon-
ductor occupy two states. One is the superconducting state,
in which the electrons are paired and transport with no resis-
tance. The other state is the normal state, in which the elec-
trons are not paired and act as NCEs. When the temperature T
is lower than the critical temperature Tc of the superconductor,
both SCEs and NCEs exist and the sum of their two densities
is equal to the total electron density n, which is ns + nn = n,
where ns and nn are the densities of SCEs and NCEs, respec-
tively. However, when T > Tc, the density of SCEs, ns, be-
comes zero and nn = n. In this paper we deal with complex
PBSs below Tc.

2.1. Temperature dependent dielectric function of HTSCs

In the two-fluid model we can find the dielectric function
ε(ω) with respect to order parameter all along the
superconductor [12, 16]

ε(ω) = ε∞

[
1 − ω2

sp

ω2
− ω2

np

ω(ω + iγ )

]
, (1)

with

ωsp =
(

nse2

mε0ε∞

)1/2

, (2)

ωnp =
(

nne2

mε0ε∞

)1/2

, (3)

where ωsp and ωnp are the plasma frequencies of SCEs and
NCEs, respectively. ε∞ is the dielectric constant of the
superconductor and ε0 is the dielectric constant in a vacuum.
γ = τ−1 is the damping term of NCEs and τ is the electron
relaxation time. e and m are the charge and mass of the
electron, respectively. In previous papers, the contribution
of NCEs, which is the third term on the right-hand side of
equation (1), was neglected [12, 13]. They focused on the
microwave or far-infrared region. The damping term γ of their
superconductor was much larger than the microwave frequency
or far-infrared frequency, thus they said that the contribution
of the NCEs could be neglected. But in our calculation we
consider the contributions of both SCEs and NCEs. One
can see that this contribution is not always small when the
temperature increases from 0 K to Tc. We rewrite equation (2)
in the form:

ωsp = c

λL(T )
√

ε∞
, (4)

where c = 1√
ε0μ0

is the velocity of light in a vacuum and

λL(T ) = ( m
μ0nse2 )

1/2 is the London penetration depth, which
is dependent on temperature [17]:

λL(T ) = λ(0)

[
1 −

(
T

Tc

)4
]−1/2

, (5)

where λL(0) is the value of λL(T ) at absolute zero.
Substituting equation (5) into equation (4), we have the
temperature dependent plasma frequency of SCEs:

ωsp = c

λL(0)
√

ε∞

[
1 −

(
T

Tc

)4
]1/2

. (6)

From equations (2) and (3) we have the relationship between
ωsp and ωnp, which is ωnp = ωsp

√
nn/ns. Using the Gorter–

Casimir result [17]: ns/nn = (Tc/T )4 − 1, we obtain the
temperature dependent plasma frequency of NCEs:

ωnp = c

λL(0)
√

ε∞

(
T

Tc

)2

. (7)

As shown in equations (6) and (7), for the condition of T � Tc,
the value of ωsp decreases while the value of ωnp increases with
increasing temperature. Substituting equations (6) and (7) into
equation (2), we obtain the temperature dependent dielectric
function of HTSCs:

ε(ω) = ε∞ − c2

λL(0)2

[
1 −

(
T

Tc

)4
]

1

ω2

− c2

λL(0)2

(
T

Tc

)4 1

ω(ω + iγ )
. (8)

2.2. Frequency dependent plane wave expansion method

Here we investigate a 2D photonic crystal composed of
infinitely long HTSC cylinders. The dielectric constant of the
photonic crystal is ε(r‖). The periodicity of ε(r‖) implies

ε(r‖ + ai ) = ε(r‖) (i = 1, 2), (9)
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where {ai} are the elementary lattice vectors of the 2D photonic
crystal and r‖ denotes the 2D position vector (x, y). Because
of the spatial periodicity, we can expand ε(r‖) in a Fourier
series:

ε(r‖) =
∑
G‖

κ(G‖) exp(iG‖ · r‖), (10)

where G‖ = l1b1 + l2b2 is the reciprocal lattice vector of
the 2D photonic crystal. To determine the Fourier coefficients
{κ(G‖)} of ε(r‖), whose cross section is a circle of radius ra, in
the particular case of cylinders characterized by the dielectric
function, we write ε(r‖) in the form

ε(r‖) = εb + [ε(ω) − εb] S(r‖), (11)

with

S(r‖) =
{

1 for |r‖| � ra,

0 for |r‖| > ra,
(12)

where εb is the dielectric constant of the background dielectric
material in which the HTSC cylinders are embedded. Here
we deal with frequency independent background dielectric
materials. The inverse Fourier transform gives

κ(G‖) = εbδG‖0 + [ε(ω) − εb]
1

ac

∫
ac

dr‖S(r‖) exp(−iG‖ · r‖)

= εb + [ε(ω) − εb] f, for G‖ = 0 (13)

κ(G‖) = εbδG‖0 + [ε(ω) − εb]
1

ac

∫
ac

dr‖S(r‖) exp(−iG‖ · r‖)

= [ε(ω) − εb] f
2J1(G‖ra)

G‖ra
, for G‖ �= 0 (14)

where ac = |a1 × a2| is the area of the unit cell, f = πr 2
a /ac

is the fill fraction and J1(x) is a Bessel function. As a matter of
convenience, we first substitute equation (1) into equations (13)
and (14), and then replace ωsp and ωnp by the right-hand side
of equations (6) and (7), respectively, in numerical calculation.
From equations (1), (13) and (14), we obtain

κ(G‖) = (1 − f )εb + f ε∞

[
1 − ω2

sp

ω2
− ω2

np

ω(ω + iγ )

]
,

for G‖ = 0 (15)

κ(G‖) =
{

ε∞

[
1 − ω2

sp

ω2
− ω2

np

ω(ω + iγ )

]
− εb

}
f

2J1(G‖ra)

G‖ra

for G‖ �= 0. (16)

In the case of E-polarization, the nonzero components of the
electric field E(r‖; t) and the magnetic field H(r‖; t) are

E(r‖; t) = [0, 0, Ez(r‖)] exp(−iωt), (17)

H(r‖; t) = [Hx(r||), Hy(r‖), 0] exp(−iωt). (18)

Hx(r‖) and Hy(r‖) can be expressed in terms of Ez(r‖), and
the Maxwell equation for the electric field is reduced to(

∂2

∂x2
+ ∂2

∂y2

)
Ez(r‖) + ε(r‖)

ω2

c2
Ez(r‖) = 0. (19)

To solve this equation we expand Ez(r‖) according to

Ez(r‖) =
∑
G||

A(G‖) exp
[
i(k‖ + G‖) · r‖

]
, (20)

where k‖ is the wavevector in the first Brillouin zone. From
equations (10), (19) and (20), we have the following eigenvalue
equation for the expansion coefficients [18]:

(k‖ + G‖)2 A(G‖) = ω2

c2

∑
G′‖

κ(G‖ − G′
‖)A(G′

‖)

= ω2

c2
κ(0)A(G‖) + ω2

c2

∑
G‖

′
κ(G‖ − G′

‖)A(G′
‖), (21)

where the prime on the sum over G′
‖ indicates that the term

with G′
‖ = G‖ is omitted. Substituting equations (15) and (16)

into equation (21), and replacing ωsp and ωnp by the right-hand
side of equations (6) and (7) we obtain[(ω

c

)3
B +

(ω

c

)2
C + ω

c
D + M

]
A = 0, (22)

where A is the column vector of {A(G‖)}; B, C, D and M are
NG × NG matrices, and NG is the number of plane waves
employed in the expansions of ε(r‖) and Ez(r‖). The elements
of the matrices are given by

BG‖,G′
‖ = [

εb + (ε∞ − εb) f
]
δG‖,G′

‖

+ (ε∞ − εb) f
2J1(|G‖ − G ′

‖|ra)

|G‖ − G ′
‖|ra

, (23)

CG‖,G′
‖ = i

γ

c

[
εb + (ε∞ − εb) f

]
δG‖,G′

‖

+ i
γ

c
(ε∞ − εb) f

2J1(|G‖ − G ′
‖|ra)

|G‖ − G ′
‖|ra

, (24)

DG‖,G′‖ = −
[

f

λL(0)2
+ (k‖ + G‖)2

]
δG‖,G′‖

− f

λL(0)2

2J1(|G‖ − G ′
‖|ra)

|G‖ − G ′
‖|ra

, (25)

MG‖,G′
‖ = −i

γ

c

{
f

λL(0)2

[
1 −

(
T

Tc

)4
]

+ (k‖ + G‖)2

}

× δG‖,G′
‖ − i

γ

c

f

λL(0)2

[
1 −

(
T

Tc

)4
]

2J1(|G‖ − G ′
‖|ra)

|G‖ − G ′
‖|ra

.

(26)

Equation (22) is a nonlinear problem of the third order,
which can be reformulated as a linear problem in 3NG
dimensions [3, 19]. We rewrite equation (22) in this form:(−β2B−1C − βB−1D − B−1M

)
A = β3A, (27)

where β = ω/c. Here equation (27) is reformulated as a matrix
of order 3NG × 3NG( 0 I 0

0 0 I
−B−1M −B−1D −B−1C

)( A
βA
β2A

)
= β

( A
βA
β2A

)
,

(28)
where I is a NG × NG identity matrix. The complete solution
of equation (22) is obtained by solving for the eigenvalues of
equation (28). We write the eigenvalues, which are complex,
in the form

β = ωR

c
+ i

ωI

c
, (29)
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Figure 1. Complex photonic band structure of the two-dimensional photonic crystal composed of high-temperature superconductor
(Bi1.85Pb0.35Sr2Ca2Cu3.1Oy) cylinders at T = 5 K. (a) The real part of complex photonic band structure; (b) the imaginary part of complex
photonic band structure: the lifetime of the lowest seven eigenmodes associated with the real part of complex photonic band structure shown
in (a). ε∞ = 12, εb = 1, ra = 0.2a, γ = 1 THz, NG = 1585.

where ωR represents the real part of the frequency and ωI

determines the lifetime τw of the eigenmodes associated with
the PBSs, according to the definition [3]

1

τw

= −2ωI. (30)

Since the eigenvalues are the general solutions of the
eigenequation (28), we have to discarded the solutions which
correspond to unphysical modes, i.e. those with a negative real
part ωR/c and with a positive imaginary part ωI/c yielding a
negative lifetime.

3. Numerical calculation and discussion

In the calculation there is another important problem we should
consider: is the damping term γ = τ−1 temperature dependent
or temperature independent? In this section, we first use a
fixed damping term to calculate the temperature dependent
PBSs and the lifetime of the eigenmodes associated with the
PBSs. The results obtained by our method are compared with
those obtained by the approximation method [12, 13], which
neglects the contribution of NCEs. Both methods use the same
parameters. Then we use a temperature dependent damping
term following an exponential relation, which has been
detected in experiments [20, 21], to calculate the temperature
dependent PBSs and the lifetime of the eigenmodes. The
exponential relation will be discussed in detail in section 3.2.
And the results are also compared with those obtained by the
method in [12, 13].

3.1. Using a fixed damping term while T/Tc changes from
0 to 1

We utilize infinitely long cylinders of the copper oxide HTSC
Bi1.85Pb0.35Sr2Ca2Cu3.1Oy to form a 2D photonic crystal with
a triangular lattice. In previous papers [12, 13], PBSs of
this crystal have been investigated using the approximation
method which neglects the contribution of NCEs. Here we
use the same initial parameters in [13] in order to compare
our results with those obtained in that paper. The initial
parameters are: the critical temperature is Tc = 107 K; the

dielectric constant of the HTSC is ε∞ = 12; the background
of the photonic crystal is air (εb = 1); the lattice constant is
a = 100 μm; the radius of the cylinder is ra = 0.2a; at
5 K, the London penetration depth is λL(5) = 23 μm, and
the London penetration depth at absolute zero, λL(0), can be
obtained from equation (5), which is λL(0) = 1.45 × a/2π

(the London penetration depth is normalized in units of a/2π).
We assume that the damping term of this HTSC is relatively
weakly temperature dependent, so we suppose that it is fixed
with increasing temperature, and is γ = 1 THz. In calculation,
the damping term is normalized in units of 2πc/a, which is
γ = 5.31 × 10−2 × 2πc/a. In figure 1(a), we plot the real
part of the PBS for E-polarized EM waves propagating through
the 2D triangular lattice at T = 5 K. As shown in this figure,
the cut-off frequency is the lowest frequency. In other words,
there is no eigenmode which has a smaller frequency than that.
Figure 1(b) is the lifetime of the lowest seven eigenmodes
associated with PBS shown in figure 1(a). A total of 1585 plane
waves were used to obtain these results.

As shown in figure 1(a), a PBG exists in the range from
0.335×2πc/a to 0.470×2πc/a (the ordinate plots frequencies
in lattice units of 2πc/a). This gap range is almost the same as
the result obtained in [13] (using the same parameters), which
is from 0.33 ×2πc/a to 0.47 ×2πc/a. This means that at low
temperatures (T � Tc) the contribution of the NCEs can be
neglected, because the results obtained by the two methods—
neglecting and not neglecting this contribution—are almost the
same. In fact, we can guess from equation (8). From this
equation, the contribution of NCEs, which is the third term
on the right-hand side of equation (8), is directly proportional
to (T/Tc)

4. Thus when T � Tc, the contribution of NCES is
quite small, so it can be neglected and has little influence on the
result of PBS. However, the contribution of NCEs increases by
four orders of magnitude with increasing temperature. When
T/Tc approaches 1, this contribution cannot be neglected, as
shown below.

In order to investigate the influence of neglecting the
contribution of NCEs and not neglecting this contribution, we
calculate the dependence of the midgap ωmid (the frequency at
the middle of a PBG) and the PBG per midgap ratio �ωR/ωmid

on temperature of this photonic crystal and compare our results

4
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Figure 2. Dependence of the midgap (square symbols) and the
photonic band gap per midgap ratio (circle symbols) on temperature.
Solid symbols indicate the results obtained with our method which
considers the contribution of NCEs. Hollow symbols indicate the
results obtained by the method [12, 13], which neglects the
contribution of NCEs. ε∞ = 12, εb = 1, ra = 0.2a, γ = 1 THz,
NG = 618.

with those obtained by the method used in [12, 13]. We have
found that the convergence of these calculations is rapid and
a relatively small number of plane waves is required to obtain
an accurate PBS for the case of E-polarization, so a total of
618 plane waves are used to obtain the results for all values
of T/Tc and an error of the eigenvalues for 618 plane waves
is less than 0.1% in comparison to results obtained using 1585
plane waves. We focus on a PBG which appears between the
first and the second photonic bands, as shown in figure 1(a).

In figure 2, ωmid and �ωR/ωmid are plotted as a function of
temperature. The results were obtained by our method which
considers the contribution of NCEs and the method in [12, 13]
which neglects that contribution. For the results obtained with
our method, both ωmid and �ωR/ωmid change a little with
increasing temperature, actually they almost on a horizontal
line. On the other hand, for the results obtained by the method
in [12, 13], ωmid decreases monotonically while �ωR/ωmid

increases monotonically with increasing temperature, which
is similar to [12], although we use different parameters from
them in this calculation. In figure 2, the localization of ωmid

and the value of �ωR/ωmid obtained by both methods are
almost the same in the low-temperature range 0 < T /Tc � 0.3;
however, after T/Tc exceeds 0.3, the difference between the
results becomes larger and larger with increasing temperature,
which means that the contribution of the NCEs becomes larger.
So we come to the conclusion that the contribution of NCEs
is non-negligible in the temperature range 0.3 < T/Tc � 1.
We can comprehend this phenomenon as follows. According
to equations (6)–(8), when the temperature increases, the
contribution of SCEs decreases by four orders of magnitude
of T/Tc, while the contribution of NCEs increases at the same
speed. When T � Tc, the contribution of the NCEs has quite
a small influence on the PBSs, so that it can be neglected.
However, at temperatures close to Tc, the contribution of the
NCEs is far larger than the contribution of the SCEs. If the
contribution of the NCEs is neglected (as in [12, 13]), it will
have a strong influence on the PBS, resulting in large tunability
by temperature as shown in figure 2 (the hollow symbols). But

Figure 3. Dependence of the cut-off frequency on temperature. Solid
symbols indicate the results obtained with our method which
considers the contribution of NCEs. Hollow symbols indicate the
results obtained by the method [12, 13], which neglects the
contribution of NCEs. ε∞ = 12, εb = 1, ra = 0.2a, γ = 1 THz,
NG = 618.

this large tunability does not occur. The reason is that, from
equations (6)–(8), if we take contributions of both SCEs and
NCEs into consideration, the sum of them changes a little with
increasing temperature, which means the dielectric function
changes a little, so that the PBS is not greatly changed. That
is why ωmid and �ωR/ωmid obtained by our method are almost
on a horizontal line. From the comparison of the two methods,
the contribution of the NCEs becomes large with increasing
temperature and it is non-negligible.

Figure 3 shows the dependence of the cut-off frequency
ωcutoff on temperature of this photonic crystal. The results
obtained by our method are also compared with those
obtained with the existing method [12, 13], which neglects the
contribution of NCEs. From figure 3, the difference between
the cut-off frequencies obtained by the two methods becomes
large with increasing temperature, which is similar to the PBG
results shown in figure 2. Especially at T/Tc = 1, the cut-off
frequency obtained by the method in [12, 13] has disappeared
(becomes zero), while the cut-off frequency obtained with our
method changes a little. We comprehend this phenomenon at
T/Tc = 1 as follows. The contribution of SCEs becomes zero
at that temperature (the plasma frequency of SCEs ωsp = 0
from equation (6)) while the contribution of NCEs reaches
its maximum value (in the temperature range below Tc). For
the method in [12, 13], the dielectric function reduces to a
constant ε∞, which is similar to photonic crystals composed
of frequency independent dielectric materials which have no
cut-off frequency [5]. On the other hand, for our method, the
reduced contribution of SCEs is remedied by the contribution
of NCEs, so the dielectric function changes a little and the cut-
off frequency is not greatly changed, as shown in figure 3 (solid
symbols).

We have also calculated PBSs of a 2D photonic crystal
with HTSC components in a different lattice (square lattice),
which is not shown here. The results are similar to those in
figures 2 and 3. Here we conclude that for HTSCs having a
relatively weaker temperature dependent damping term (using
a fixed damping term in the calculation), PBSs are insensitive

5
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Figure 4. Dependence of the midgap (square symbols) and the
photonic band gap per midgap ratio (circle symbols) on temperature.
Half-solid symbols indicate the results obtained with our method
which considers the contribution of NCEs. Hollow symbols indicate
the results obtained with the method in [12, 13], which neglects the
contribution of NCEs. ε∞ = 15, εb = 1, ra = 0.2a,
γ = p exp(T/T1), p = 2.5 × 1010 Hz, T1 = 0.13Tc, NG = 618.

to increasing temperature in our method. And the contribution
of NCEs can be neglected in the low temperature range, which
is 0 < T/Tc � 0.3 (in our calculation), but in the temperature
range 0.3 < T/Tc � 1 that contribution is non-negligible.

3.2. Using a temperature dependent damping term while T/Tc

changes from 0.15 to 1

We should note that the damping term γ is fixed with
increasing temperature in section 3.1. However, there are
wide variations in the temperature dependence of the damping
term: in materials doped with Zn or Ni or in most thin
films, γ is extrinsic and has a relatively weaker temperature
dependence; on the other hand, in high-purity single crystals of
YBa2Cu3O6+x , γ falls to microwave frequencies (≈30 GHz)
for T � 40 K [23]. Bonn et al noted that γ in YBa2Cu3O6.95

(Tc = 92.7 K) follows an exponential law, γ ∝ exp(T/T0),
where T0 ≈ 12 K, for T between 15 and 84 K [21]. Barrett et al
noted that all measurements of γ , denoted W1α (α = a, b, c
for magnetic fields applied along the three principal axes of the
crystal YBa2Cu3O7), followed the same exponential behavior,
W1α/T ∝ exp(T/T0), with similar values of T0 [20, 21]. Thus
in this paper we consider a situation in which the HTSC
components have a temperature dependent damping term.

In this section, we investigate a 2D photonic crystal
composed of infinitely long HTSC cylinders in a triangular
lattice. E-polarized EM waves propagate through the photonic
crystal. We suppose that the dielectric constant of the HTSC
is ε∞ = 15; the background of the photonic crystal is air
(εb = 1); the lattice constant is a = 100 μm; the radius of
the cylinder is ra = 0.2a; the London penetration depth at
absolute zero is λL(0) = 200 nm (referring to [15]), which
is λL(0) = 1.26 × 10−2 × a/2π . The damping term of the
HTSC is temperature dependent, which follows an exponential
relation γ = p exp(T/T1), where p = 2.50 × 1010 Hz (p =
1.33 × 10−3 × 2πc/a), T1 = 0.13Tc, for T between 0.15Tc

and Tc (referring to [21]). Here, the values of p and T1 are
not precise, because we just want to consider a situation with

Figure 5. Dependence of the cut-off frequency on temperature.
Half-solid symbols indicate the results obtained with our method
which considers the contribution of NCEs. Hollow symbols indicate
the results obtained by the method in [12, 13], which neglects the
contribution of NCEs. ε∞ = 15, εb = 1, ra = 0.2a,
γ = p exp(T/T1), p = 2.5 × 1010 Hz, T1 = 0.13Tc, NG = 618.

a temperature dependent damping term having an exponential
relation which has been detected in experiments [20, 21]. Our
results are also compared with those obtained with the existing
method [12, 13], which neglects the contribution of NCEs. The
number of plane waves used in these calculation is NG = 618
for all values of T/Tc. An error of the eigenvalues for 618 plane
waves is less than 0.1% in comparison to results obtained using
1585 plane waves.

First, we focus our attention on a PBG which appears
in the frequency range (1.1–1.2)2πc/a. Figure 4 shows the
dependence of the midgap ωmid and the PBG per midgap
ratio �ωR/ωmid obtained by our method and the method
in [12, 13]. From figure 4, ωmid and �ωR/ωmid obtained
by the two methods decrease monotonically with increasing
temperature. We can see that in the low-temperature range
0.15 � T /Tc � 0.3 the results obtained with the two methods
are almost the same. But ωmid and �ωR/ωmid decrease rapidly
with increasing temperature for the method in [12, 13], while
those values decrease more slowly for our method. Neglecting
or not neglecting the contribution of NCEs, different results
are obtained in the temperature range 0.3 < T /Tc � 1, so
the contribution is non-negligible in this temperature range.
The cut-off frequency of this photonic crystal has the similar
tendency with increasing temperature, as shown in figure 5.

Figure 5 shows the cut-off frequency of this photonic
crystal as a function of temperature. Cut-off frequencies
obtained by the two methods decrease monotonically with
increasing temperature. Moreover, results obtained with our
method change more slowly than the results obtained with the
method in [12, 13]. Especially at the temperature T = Tc, the
cut-off frequency obtained by the method in [12, 13] becomes
zero (the reason for this has been discussed in section 3.1),
while that value obtained with our method is 0.624 × 2πc/a.

In fact, we can comprehend these results (figures 4 and 5)
qualitatively from equations (6)–(8). At a low temperature
which is far from Tc, the contribution of the NCEs is in
direct proportion to (T/Tc)

4, which is quite small, so it can
be neglected and has little influence on the eigenvalues. That

6
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Figure 6. The lifetime of the lowest eigenmode associated with photonic band structure. (a) The lifetime of the lowest eigenmode at
T/Tc = 0.2, 0.4, 0.6 and 0.8, respectively. (b) The lifetime of the lowest eigenmode at the � point as a function of temperature. ε∞ = 15,
εb = 1, ra = 0.2a, γ = p exp(T/T1), p = 2.5 × 1010 Hz, T1 = 0.13Tc, NG = 618.

is why the results obtained using the two methods are almost
the same in the low-temperature range. But the contribution
of SCEs decreases with increasing temperature, while the
contribution of NCEs increases. If the contribution of NCEs
is neglected as in [12, 13], it will has a large influence on the
calculation results in the high-temperature range. That is why
the results obtained by the method in [12, 13] change a lot
with increasing temperature. In our method, contributions of
both SCEs and NCEs are considered; furthermore, the damping
term is temperature dependent and increases exponentially
with increasing temperature. The contribution of the damping
term counteracts some part of the contribution from the NCEs.
According to equation (8), by analyzing the Drude formula,
an increasing γ counteracts the plasma frequency in the real
part of the permittivity. Thus the tendency of the results is the
same as that obtained with the method in [12, 13], but changes
slowly. Above all, for HTSCs having a temperature dependent
damping term, the contribution of the NCEs can be neglected
in the low-temperature range, which is 0 < T/Tc � 0.3 (in our
calculation), but in the temperature range 0.3 < T/Tc � 1 that
contribution is non-negligible.

The dependence of the lifetime of the lowest eigenmode
associated with PBS on temperature has also been investigated
for this photonic crystal. In figure 6(a), we plot the
lifetime of the lowest eigenmode at different temperatures:
T/Tc = 0.2, 0.4, 0.6 and 0.8. As shown in figure 6(a),
the shape of the lifetime curve is almost unchanged at
different temperatures, and the curve just shifts downward
with increasing temperature. Figure 6(b) shows the lifetime
of the lowest eigenmode at the � point as a function of
temperature. The lifetime decreases logarithmically with
increasing temperature. This shows that the influence of
temperature on the lifetime of eigenmodes is greater than the
influence on PBSs.

4. Conclusions

We have demonstrated temperature dependent complex PBSs
in 2D photonic crystals composed of HTSCs for E-polarized
electromagnetic waves propagating in triangular lattices.
When using a temperature independent damping term γ , the

midgap, the PBG per midgap ratio and the cut-off frequency
are insensitive to temperature; our results are different from
those obtained with the existing method [12, 13], which show
large tunability. However, according to our calculation, large
tunability does not occur when we take the contribution of
NCEs into consideration. When using a temperature dependent
damping term, our results decrease more slowly than those
obtained with the existing method. Also, in this condition, the
lifetime of the lowest eigenmodes decreases logarithmically
with increasing temperature. In both conditions, our results
correspond quite well with those obtained using the existing
method [12, 13] in the low-temperature range 0 < T /Tc �
0.3; however, those two group of results are different in
the temperature range 0.3 < T /Tc � 1. We include the
contribution of NCEs in our calculation, while the method
in [12, 13] did not, so our method is more accurate. Therefore,
the contribution of NCEs is non-negligible with increasing
temperature, especially when T is close to Tc. Our method is
suitable for the calculation of temperature dependent complex
PBSs composed of HTSCs below Tc.
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